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SUMMARY

After deriving the basic equations for the case of nonstationary
motions in proper gravitational field and the required concomitant solution
of Einstein gravitational field equations (with the included impulse energy
conservation equations), the authors offer general solutions for the parti-
cular cases of the equations of state, applying them to various problems

of cosmology.

1. - BASTC EQUATIONS .-

In the case of nonstationary motions in prdper gravitational fields
4t is necessary to seek the concomitant solution of Eingtein gravitational
field equations and of the equations of impulse energy conservation comprised
in them [1]

E;’—-—:—b«_‘-xﬂ'

Tk = 1 a(V=371¥ 1M

ATV ot 2 3z (1.1)
TE=(p+e)uu* + 8 p= _vg_ uu® + 8*p

u=§%€' W=(p+e)v=E+pv

Here R’i is the curvature tensor, Tki is the impulse energy tensor,

X is the Einstein gravitational constant, W is the heat content per unit
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of mass, Vv is the specific volume, Wy — the component four velocities.
If we limit ourselves to the consideration of centrally-symmetrical
motions, the time-space metric may be chosen in the following form:

ds? = e'ctd? — eAr® — r (dB? + sin? B dg?)
Boo=—¢€, gun=¢e, gn=r% gys=risin?f (1.2)

V—g= egp lalv+ L)] r*sin

In the following we shall study only the radial flows, when d /dt =0,
dp/dt =0. In this came, the chronometrically-invariant three-dimensional
velocity is given by the expression

' ﬂ. = e"/l' dr 3

-V @ =od = gu(g) = (F)

with, at the same time,

=e(Bdt) = (Ddr)*, O=]VT—a'/&, dv=eh

Here dt is the proper time element and the components of 4-velocity
will take the form

1 dt i - 1
ul == TR™ Te-/ u°=g°°u0=._e_e’/n'

L 3
7 By e'h u; = guul = c—ﬁe. ehr BgU® 4 uyu! = —1 (1.3:

The impulse energy conservation equations (1,1) give us the equa-
tions of motion and the continuity equation. Since dW = Td¢ + dp, where

T is the absolute temperature, & is the entropy, for the adiabatic processes

under consideration it is still necessary to utilize the entropy conserva-
tion equation

d(Wul -aw w n P do
T4 =t g +T 55, azk(v ‘u) 0 F=0 4

The system of egquations (1,4) is the complete system of conservation
equations characterizing the adiabatic flows, Substituting here the compo-
nents of h-velocity (1,3), and taking into account that

daV =g =2t 0% | ypap
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we shall obtain a system of hydrodynamics equations of radial fliows in the
proper gravitational field

1 8 8 ot (01 Adln 1 (Aa O) v _0'1’85
wAs+eg) - aF+TT +5(ERtE =T
- 3 A, ad d 22, 4,0, dvy_
"(Aa};‘v‘*‘,‘.’a‘—};:v) "’7'!?(5; Foar T :)+T+'2"(A o+ ar)‘o (1.3)
L) 2 dlnv h—v
4l om0 S =—(my), Ao (5T

Note that the expression for the velocity a* along the charac-~
teristics of these equations has the same form as in the special theory
of relativity

= alf) = () - = wmena dem o

This, incidently, is quite natural, for the presence of a gravita-
tional field cannot modify the local correlation between the chronometrical-
ly-invariant components of the three-dimensional velocities a*, a, w, measu-
red at each point r by the hours of the observer situated at the same point.
However, as follows from (1,6), the first characteristic at divergence
front (@ = 0) is found to be rectilinear in variables !, T, which have a
rhysical sense, while in variables r,t it is curvilinear.

Let us write down the field equations

3(re ) _ nrd @
Fr =1+xr‘To°—-1-——-e—,—(e+p?)

A (re

2
) — AT =% e+ 1)

(1+r%—:-)¢'1=1‘+%:(p+ 8%:—)=1+xr’T11 (1.7)

%T.’ = xT = Kp = -5;:[;%—*- _%_(%v;-)ﬁ+

1 9(v—A) 3var A 3 [, o
+r e w4

Only two of these equations are independent from equations (1,5).
It is quite convenient to write these equations in the form

A—1t at\ 3L 3 +v) _
A%+a%:'.=__;a(‘ +upre*), A(1+—c,—)ﬁ'+a—j§;——o

r
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For the given equation of state p = p (&) the equatioms (1,5) and
the first equation (1,8) determine the solution

P=p(rt), s=q(r1), a=a(rt), A=i(r1), v=v(r1)

. 1) In the static case am= O the second eguation (1,8) gives

Bl.lat-o,

and from (1,5) we have
0lnv/dt =0, do/dt =0,

comseguently,
roiik R b (1.9)
Subsequently, from equations (1,7) we have

—:'— (re) =1 —urle, er 3—: =ulp+1—et

Taking advantage of these correlations, we shall eliminate v (r)
from (1,9)

dTr(p+al+ ) _4 = R
ke R (1.10)

[Note that at p = const it stems from the equation (1,10) the equa-
tion of state of a closed static model of the Einstein Universe

t + 3?’00

Hence we conclude that the Einstein model corresponds to a star
madel with constant negative pressure. From the viewpoint of an outer
obeserver, the closed state of such a star implies the impossibility of
croseing the star's boundary by a geodesic line of any signals it however,
does not reflect, in principle, the absence of the boundary. That is why
the closed static model may be viewed as an autonomous bounded non-Eucli-
dean formstion, immersed in the outer spatial background, and, by way
of consequence, the closed state does not imply in any way the unique-
ness of this model of Universe. ]

Resolving the equation (1,10) we determine p(r), them A(r), v(r),
which fully resolves the problem about equilibrium,
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2) A substantial interest is offered by the study of radial flows of

an ideal fluid in the given gravitational field, for example, either the
outer or inner Schwarzshild field, when XA =A(r), Y=v(r) are the given

functions of r.It is easy to see that in this case the equations (1,5) will

be reduced, by mere introduction of the independent variable dr, = A dr, to

a form analogous to hydrodynamics equations of the special theory of rela-
tivity, and they differ from them only by the form of free terms

1 _ai da o! dlney a dlne 1 dw T as
(ca)z(az +“ar,)"' 'c?('or,' + oo )"l'TEr'{:‘T-ff"éF;

__{8lnv dlnv 1 /da a da e dv 2a 1.14)
Gr+en ) telmtaw) s mtaa=0 (40

a3 a3

For the outer Schwarsshild field

' a , H—t r 26M,
v+).:=0, —2-;-+-—F—-=0, er=¢ = —--;"—,ro—_—.—c?-‘l

Hence
dv - Py
dn ~ B —r/rpP

Here M, is the mass of the central body creating the field.

Z) In the general case of adiabatic flows in proper gravitational field
the finding of the solution of the aggregate system of equations (1,5) and
of the equation (1,8) present substantial difficulties, In the conclusion
of the work we rhall obtain this solution ;l.n the asymptotic case of motions
with velocities near the speed of 1ight and the ultrarelativistic eguation
of state. Here too, we propose a method of consecutive integration of (1,5)
and of the first equation (1,8), with the utilization of (1,7).

Let us firet of all eliminate from the eguations (1,5) the function
vV =V(r, t) with the help of the second equation (1,8); we shall obtain

4 (,'9a_, . ‘0a\ . ‘w® @ny , 8Adlnvy 1 [, 8k &\ A OT s
(m('4w+‘°%7\)-’5(w+?<57)= =45 tog)+ 7

~ (At ) R (F )

-7rle+%a) . (1.4
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In the equations (1,12) we shall pass to independent variables r,A;
to that effect we shall find with the aid of the first equation (1,7) and
of the first equation (1,8) the Jacobian transformations 4(;r)/d(;r), and

also ot/ dr; we have

-

A(tir) 9t Ady a
SSang=tm = 4 eam=A(—F) (1.13),

Here
Ay=e?, Ay=1+uxprt—e?, Ag=wxrfeter—1, A=x(p+e)(r/)?

The correlations (1,13) bring the equations (1,12) to the symmetric

form
A da3 _ da2 [ dlnv dlnv 1 Te*A4, as
2(6c)y? (Ala_“xnr -““W) - ?(Al‘a mr T 451 ) + g de= fv_‘ EN
4 3lny dlnv 1 dlnv dlna
(4i7mr— 475) — & (4gmr + 4550 —
—2{41"}'%’-’-0. A:%—Axg%,=0 (1.19)

Let us recall that for the selected equation of state, for example,
at - p* =0,0,¢ and p, the functions ¢, & and the equations (1,4) contain
the three unknown functions '

=vM7, aea=alr), o=0(A 1 ,
The integration of these equations may be performed by the method
of characteristica. ’

After that we determine v = v(A,r) from the first equation (1,8)
which, in variables )\ ,r takes the form

o .
41W+(44—Az)g—:=%Ac+A: (1.15)

Finally, with the aid of (1,13) we find t =t ( A\, r), which gives
us the complete solution of the problenm, '

Thus, the consecutive integratiom of (1,14), (1,13) and (1,15)
allows to construct the solutions of isotropic motions in the reading
system linked with the outlined symmetry center and not in the concomitant
calculation system where a = 0, The three~-dimensional velocity a, measured
in such reading systems, has a specific physical asense when the statement
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of boundary problems is made in the given outer gravitational field. as well
as study of motion in proper graviattional field.

Moreover, the equations (1,5) pass in the limit case of gravitational
field absence (Galilee metric) to hydrodynamics ecuations of the special theo-
ry of relativity, whereas in the concomitant reading syatem such a transition
is inconristent. inasmuch as the latter is precisely determined from the con-
dition of egquality to zero of impulse energy flux. In case of isentropic
flows, the system (1,14) is reduced to two equations.

2. — GENERAL SOLUTIONS OF PARTICULAR CASES OF EQUATIONS OF STATE

a) Dust-like Matter ®*. - In cosmological problems it is usually admit-
ted that the pressure vanishes little by comparison with the mean density of
matter in the Universe, that is, p <e=pc’. If we postulate p = O, 6 = const
we have ® = O, 4 lnV = — d1lné¢, and the equatiom (1,l14) will be consi-
derably simplified

dat da?

F'%,(GW—Alm)=a, a.=1—A1

dlns dlne , 1 dlna dln A ,
Alﬁlnr_a ax‘+ﬁ(4131T,+Aa—a—A—a)+2Al—-—2l= (2.1)

0 =1—0a/ct = 4,0, (ar) (2.2)
Subsequently, from the second equatiom (2,1) we find

e= (Q:(ar) —By)B,, B, =exp (SB,dA.), B,=SB.Bldx,

By=a(zq; — —5—) 2.3)
—__xt (r dO o
B= (i — 49,) {E d (u:) + -a—ll (1 —4,0,)— 1}

Utilizing (2,2) and (2,3), we obtain for the function v (r,A) from

the equation (1,15) at p=0

dv ov [xre a 3%
agtalEm— v =G+ (2.4)

Thie equation is also resolved in quadratures., The characteristics!

equation N _ o (wB(@—BY) o
or ( O - T)

® The problem of gas flow at p =0 in the concomitant reading system was
first resolved by Tolman in 1934 [1] . However in this solution the velocities
for the intrinsic Schwartgshild problem were not computed.
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givee‘[.l(k, r).- The second integral determines the solution along the cha-
racteristics

V)= 7’1‘;% By (1 — 4,@,) (@3 — By Y dr +alnr 4y, (1a (b 1)) (2.5)

Finally, the first equation (1,13) assigns the last, quadrature

t=—ﬁ§%%’“+wm 2.6)
Therefore, we obtained the general solution of the problea of motion
of the dust-like matter, given by the integrals (2,2) — (2,6) and depending
upon four arbitrary functions ®; Oy, x.
When resolving concrete boundary problems, it is necessary to assign
the preliminary distribution of wvelocities 6, = 9, (A, r) and determine 5’, ]
it is then eesy to find P, ¥, x.

b) Ultrarelativistic Approximation.- Let us consider the case of
adiabatic motions with velocities near the speed of light. We postulate

a/¢c m1 = 2A, where A <€ 1. Neglecting the higher orders of smallness of

&, we shall write the systems (1,5) and (1,8) in the form

Aaln(Wv) +am(m) _3_' Ag%_!_%:_[elr— ]
AG+T=0, 4Z B0 v, D=ha+r—21W @2.7)
Note that
dln (Wv)_aln(Wv) +6ln(Wv) ds

The first equation of this system, taking into account the fourth,
gives

‘p , 8p _2( 0p
At =7 (a Tn (Wv) )._ (2.8)
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We shall transform the third equation (2,7) analogously
d(lnA+2) , (lnA+1) olnw ap , @
T e = B T3 ). (A3F+ 79%) =0 (2.9)

For the relativistic equation of state

kpv?

p;(k——i)e, Wo=v(ev 4 pv) = % —1

-

Hence, taking into account that pvk = 6, we find

(alng)' = k;;i , (aln.a.(}:'V‘v)). - kk—P2

Substituting these values into the equations (2,7) and passing to
independent variables p, r, we shall obtain the system

n , &—1 A_p o _
=+ — -+ xrpe baP—O

d(nA+d) _, 8(nA+d) , A(k—1) —0

ar p 2—kr (2.10)
s ds ar a _ 2kp
-ﬁ—b—P=0, A—E‘.+bﬁ_ ’ b—(z—-k)p
The first equation is integrated at once
1—er= -;—,Fg (Y)—¢€. Y= pr¥nk ¢ = ﬂ‘;?(%’::;_k)' (2.11)

After that it 1s easy to write the solution of the second equation
(2,10)

-

A = eF, (1) po-vi = (1— 3 Fit ¢ Fypre-one 2.12)

om Fy (1) (2.13)
The fourth equation (2,10) may be resolved after the determination
of V=v(p,r),since A =exp [1/2( A=v)]l. For the determination of Vv we
shall utilize the second ecuation (1,8), written in the variables p, r

at the same time, in our approximation

’ A e+ , [ora(+v) _ .'.
U — Gttt =0 (2.14)
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We shall substitute the derivative 3t.' /ér  from the fourth equation
(2,10), and we shall determine &' /dp from the second equation (1,7)

A A AY) ., o &(k—4)A [O(h+ ) a(A+v)
2 R e — [ —b T]

ap ap  x=kp? or

This equation assigns Vv = v (p,r), following which we shall write
the last quadrature for

et = Fo(r) + {exp (s (h(p, ) —v (p, )} dr (2.15)

The constructed solution depends on five arbitrary functions and

resolves the probel set up.

[ It may be said that the basic equations (1,5) and (1,7), which
allow the inclusion into consideration the electromagnetic fields too, fully
describe the cemtrosymmetrical flows in proper gravitation field and may be
utiliged in cosmology of isotfépic space, The general theory of relativity
in this context is simply the gas dynamics of the Riemannian space.

It should be noted that the problem set up here of investigation of
exact equations, practical for the dewcription of the relativistic motion of
the medium in proper gravitational field, may be resolved by utilizing the
variational methods of the continuum and the field equations [2]11].
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